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A conformal-mapping-based coordinate generation method for periodic configurations has 
been developed. 4 channel of an arbitrary shape in the physical plane, representing internal 
configurations, is mapped into a straight channel in the computational plane, and a wall of an 
arbitrary shape in the physical plane, representing external configurations, is mapped into a 
straight wall in the computational plane. The parameters of the transformations have to be 
determined through a method of successive approxinrations. A simple iteration scheme. that 
converges quite rapidly even with a poor initial guess. is presented. Solutions for different con- 
figurations are displayed to illustrate the capabilities of the method. ‘c 1986 Academic Press, Inc. 

1. INTROIXJCTION 

Numerical grid generation is a fairly common tool in computational fluid 
dynamics, however, its applications extend to solutions of partial differential! 
equations arising from all physical problems involving field properties. The com- 
mon goal of different grid generation methods is to construct boundary fitted coor- 
dinates. These coordinates are in general curvilinear. The held equations are con- 
siderably simplified if the coordinates satisfy the condition of orthogonality, and are 
characterized by only one metric coefficient if the coordinates are also conformal. 
The simplicity of the field equations written in terms of the conformal coordinates is 
the major motivation for working with such coordinates. 

There is quite a variety of coordinate generation methods based on conformal 
mappings [3,4]. The most robust one utilizes the Schwarz- Christoffel type trans- 
formations and is capable of dealing with external [2] and internal [3] con- 
figurations of arbitrary shape. This paper describes an extension of this method to 
the case of periodic configurations. The periodic configurations are defined here as 
configurations consisting of an infinite number of segments of similar form and size. 
The basic idea of the method is to map a periodic wall, made up of segments of an 
arbitrary shape in the physical plane, into a straight wall in the computational 
plane, and similarly, to map a periodic channel from the physical plane into a 
straight channel in the computational plane. Thus, the solution of the flow problem 
may be carried in the computational plane with the help of a simple rectangular 
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grid. Transformations being presented have a semi-analytical form; that is the form 
of the transforming function is known, however its parameters are not. The 
parameters are defined in the computational plane, and thus, they are not known a 
priori for the configuration of interest in the physical plane. Simple numerical 
procedures permitting determination of the parameters are described. These 
procedures have a very simple logic, are very effective and are easy to program. 

Section 2 deals with internal configurations. Transformation for a channel bound- 
ed by straight wall elements is described in Section 2.1 and its extension to periodic 
configurations is given in Section 2 .2. Channels bounded by curved wall elements 
are discussed in Section 2.3 and the periodicity condition is introduced in Sec- 
tion 2.4. Section 3 deals with external configurations. Walls formed by straight 
elements are discussed in Section 3.1 and the periodicity condition is described in 
Section 3.2. Section 3.3 describes walls formed by curved elements and Section 3.4 
gives extension of the appropriate transformation to the case of periodic walls 
formed by elements of arbitrary shape. Section 4 describes metric coeflicients for a 
conformal system. Determination of the parameters of the transformtion is 
equivalent to the solution of the potential flow problem in a periodic configuration. 
Section 5 describes such solutions. Streamlines of rhe inviscid flow behave as 
optimal coordinates in boundary-layer analysis [S], and therefore, the coordinates 
described in this paper are particularly well suited for the incorporation of the scal- 
ing typical for the high Reynolds number flows. 

2. INTERNAL CONFIGURATIONS 

Internal flows are those where the fluid is surrounded by solid boundaries and 
the term internal configuration refers here to the shape or configuration of these 
boundaries. The most obvious example is the case of a flow trough a channel. 

2.1. Channel Bounded by Straight Elements 

An arbitrary channel, bounded by straight wall elements in the physical plane, is 
mapped into a straight channel in the computational plane. The appropriate trans- 
formation has been introduced by Sridhar and Davis [6]. The transformation has 
been described in detail by Floryan [3] and is illustrated in Fig. 1. The following 
presentation is limited to a short outline. The transformation has the form, 

where R is a complex constant, n determines number of corners. CUC’S denote corner 
turning angles, a’s denote locations of corners in the computational plane and the 
remaining symbols are explained in Fig. 1. Angles CLZ are taken to be positive for 
the clockwise rotation when the channel is circled in the counterclockwise sense. 
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z PLANE (physical) w PLANE (computational) 

FIG. I. Mapping of an arbitrary channel into a straight channel. 

The transformation is completed provided locations of the points a in the COG- 

putational plane. and corresponding to the corners in the physical plane, are known 
and the complex constant R is determined. This is achieved by applying the 
numerical procedure described in the next section. 

2.1.1. Determinatiorl of the Parameters qf the Tramformation 

The difficulties in applying transformation ( 1) are due to the fact that the relation 
between a particular channel shape, and the numerical values of the parameters of 
the appropriate transformation, is not explicit. The required parameters have to be. 
therefore, determined through a method of successive approximations. 

Transformations being considered in this paper are of the Schwarz-Christoffel 
type. The relation between the -7 and IV planes is given as 

where I stands for the right-hand side of Eq. (1). The initial point M’~ in the 
\V plane can be chosen arbitrarily within the domain O< Em(rv,)< h, 
- SC -C Re(,v,) < -I- icj, and it is taken to zero throughout this paper. Once the 
initial point 11’~ has been chosen, the constant N controls the location of the channel 
in the 2 plane. The constant N is taken to be zero throughout this paper and thus 
the origins of the ; and w planes coincide. If the n turning angles 2,x, x~x,.... ~,!n 
are given, the shape of the channel in the z plane is determined uniquely by the 
choice of II points aI, a,,..., a,, in Eq. (1) and is independent of the particular values 
of the constants IV~ and N in Eq. (2) and R in Eq. (1)~ The constant R controis the 
scale of the channel through the value of IRl and its orientation through the value 
of arg(R j. According to the Riemann’s mapping theorem [ 11, just three of the 
points aj may be chosen arbitrarily. The reader should note that the total number 
of corners in Eq. (1) is n + 2, where n corners appear explicitly and two degenerate 
corners enter the equation only implicitly. One of the degenerate corners 
corresponds to the left end of the channel and the second corresponds to the right 
end. Therefore, two points belonging to the boundary of the transformed domain 
are fixed due to the nature of the transformation, and one point remains to be 
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chosen arbitrarily. This choice is accomplished throughout this paper by placing the 
first bottom corner at the origin of the 1%’ plane (i.e., a, = (0,O) j. All the remaining 
parameters are uniquely defined and have to be determined from Eq. ( 1) as a part 
of the solution. 

The complex constant R and the locations aj of all the corners, with the excep- 
tion of the first bottom corner, have to be determined through a series of successive 
approximations. The following outline of the iteration procedure for symmetric 
channels is taken from [3]. 

The constant R in Eq. (1) can be written as R = (R( exp( - ad), where drr is the 
angle shown in Fig. 2 and JR1 is not known. An initial guess is made for (RI and for 
locations of corners uj. The a;s are picked along the real axis such that 
Re(a,- i) < Re(aj) < Re(a,+ i), where Re denotes the real part. The new value of /RI 
is adopted by imposing the condition 

Im g(w) dw = H 1 
where Im denotes an imaginary part, g(by) stands for the right-hand side of Eq. (1) 
and the remaining symbols are illustrated in Fig. 2. Integration is carried out sub- 
sequently with the new value of (RI along the bottom of the channel to determine 
the locations of the corners in the physical plane. The computed locations do not, 
in general, coincide with the specified locations. 

The broken line in Fig. 2 illustrates a typical shape of the channel. corresponding 
to the assumed locations of corners in the computational plane. The corner turning 
angles of the computed channel are the same as the turning angles of the specified 
channel, however, the shapes of both channels are not identical due to the dif- 
ference in distances between the corners. The shapes of both figures can be matched 
through the appropriate change in the location of the corners in the computational 
plane. The new guess is made for the location of the corners by assuming that the 

IW) f w . PLANE 

FIG. 2. Illustration of the iteration procedure for a mapping of a symmetric channel. 
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u;s should be resealed according to scaling indicated 
between the corners in the physical plane: 

225 

by errors in the distances 

Here subscript c denotes correct values, g stands for the guessed values, and .j 
denotes corner number. The above procedure is repeated until convergence is 
achieved. The process converges quite rapidly, even with a poor initial guess. 
Results for one of the cases considered are displayed in Fig. 2. 

The numerical integration of Eq. (1 j is complicated due to singularities present 
when xj < 0. The appropriate integration formula, extracting singularities 
analytically, has been developed in [3] and has the form 

=Rexp 

where subscript r77 denotes the integration step. The function [, is defined as 

sinh( n/2h)( H’ - ak) ‘: 
4(“‘) = (rc/2h)(K - ak) 1 

and its value evaluated at the middle of the integration step j( \:I,,, + ~~~~~ i I) is 
denoted by F,. Formula (6) is of the second-order accuracy type. 

2.2. Periodic Channels Bounded by Straight Elements 

A description of the transformation mapping a channel, consisting of an infinite 
number of segments of the same geometry in the physical plane, into a straight 
channel in the computational plane, is carried out with the help of the configuration 
shown in Fig. 3. The channel shown has a straight top: its bottom consists of 

Imiz) 1 z - PLANE 

FIG. 3. Channel with (2n + 1) triangular intendations on the bot:om. 
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(2n + 1) triangular indentations of the same form and size. The transformation for 
this particular channel is obtained from Eq. (1). 

sinh $ (W - azr) 
a1 

I[ sinhz(iv-a,,,,) 
a2 

2h I[ sinhT(is,--(121+Z) 1 
z3 

2il 

(7) 

where subscript 1, which denotes a particular triangle, assumes all integer values 
between I = --n and I = n. The reader should note that the turning angles, 
corresponding to the corners located on the borders between different segments, are 
defined as those between the appropriate wall element and the real axis. The turn- 
ing angle associated with each segment (triangle) is c~i + az + c(~ = 0. The con- 
figuration in the physical plane becomes periodic when the number of triangle pairs 
becomes infinite n -+ co. It is obvious that if the right-hand side of Eq. (7) in the 
limit as n --, ix) describes a certain periodic configuration in the w plane, the 
corresponding configuration in the z plane is also periodic. It remains to be 
demonstrated that the reverse statement is true. 

The periodicity of a configuration in the w plane, corresponding to a periodic 
configuration in the z plane, is shown by considering the distance between two 
corresponding points belonging to two adjacent segments of the channel, as shown 
in Fig, 4. The term “corresponding points” refers here to points belonging to dif- 
ferent segments of the channel, with each point assuming the same relative position 
in the segment to which it belongs. The distance between two adjacent 
corresponding points is given as 

,* -* - .w;,- , 
bk+l-Lk - ! g( w ) dw 

*a; 
(81 

where g(ir) stands for the right-hand side of Eq. (7) 22 and z,*+ i denote the 
locations of the corresponding points belonging to segments number k and k + 1 in 
the physical plane, and HI,* and izlz+ I denote locations of the same points in the 
computational plane (Fig. 4). The condition of periodicity requires this distance to 
be constant regardless of the particular pair of segments being considered, that is, 

Zk*+, - ,*- -* 7* Lk-Lk+?--k+,. (9) 

FIG. 4. Demonstration of the periodicity of the mapping (see Sect. 2.2). 
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The above relation is equivalent to 

(10) 

and is satisfied if the integration intervals and the integrands are equivalent. The 
equivalence is shown by introducing a new variable G defined as 

ii- = 11’ - (iv;+ l - N.k*)~ !jIj 

The new variable is obtained through a parallel translation of the coordinate 
system w along the real axis by a distance D = jrz!z+ I - w,$. The integral on the 
right-hand side (RHS) of Eq. (lo), when expressed in terms of the new variable %?. 
assumes the form 

The above expression is equivalent to the left-hand side of Eq. (10) only if 

Conditions given above are satisfied if the configuration in the computational plane 
is periodic. The requii-ed equivalence is shown explicitly by substituting Eq. ( 13) 
into Eq. (12) and changing the indices j= I- 1: 

The description of the transformation mapping a periodic channel in the physical 
plane into a straight channel in the computational plane has been carried out up to 
this point with the help of a particular configuration shown in Figs. 3 and 4. Exten- 
sion of transformation (7) to a channel consisting of repeatable segments of an 
arbitrary shape, when a particular shape is constructed out of straight elements, is 
straightforward. 
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FIG. 5. Mapping of a channel consisting of an infinite number of segments of the same form and size. 

In the above, D denotes the length of the segment in the Iv-plane, n stands for the 
number of corners in the segment, ais denote locations of corners in the segment 
and LY~~c’s are the corner turning angles. The symbols are illustrated in Fig. 5, where 
the locations of corners inside the segment are defined relative to the left bottom 
and top corners. The reader should note that the turning angles at the edges of the 
segment are those between the appropriate wall element and the real axis. The sum 
of the turning angles for a segment is zero. Transformation (15) is complete 
provided the complex constant R is known and the locations of corners oj and the 
length D of the segment, corresponding to a particular channel in the physical 
plane, have been determined. 

2.2.1. Determination of the Parameters of the Transformation 

Mapping of a periodic channel into a straight channel is described by Eq. (15), 
where the infinite product may be truncated after a finite m number of terms. The 
estimation of the truncation error is explained with the help of the configuration 
shown in Figs. 3 and 4. 

Equation (15) is rewritten as 

(16) 

where, for the case illustrated in Fig. 3, for example, 

M(w)={sinh~w)“{sinh&(n-T)r{sinhG(nl-D)y 

R,(w)= sinhG(nl---ID) 
{ 

XI 

Ii 
sinh&(\bv-/D-T) 

a2 

ii 
sinhs [w- (I+ 1) D] 

L,(W)= sinhG(lo+lD) 
{ - 

sinh & (IV + ZD - T) sinha[tv+(I-l)D] 

In the above, M(W) contains terms arising due to the middle segment (segment 0 in 
Fig. 3), R,(w) contains terms due to the Zth segment on the right side and L,(W) 
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stands for the terms due to the Ith segment on the Left side (see Fig. 3). All the 
remaining symbols are explained in Figs. 3 and 4. A single term in the product, say 
Ith term, may be rewritten as 

The behaviour of the product R,(W) L!(W) for large 1 is estimated by considering its 
logarithm 

=r,ln l-” +a In ‘l---4 +r In 
( c) 1 ( CR) 3 ( 

I--&)+2,ln(i-AC) 

+cc,ln(l-ACB)+a,ln(l-ACG) ( 19) 

where 

G=exp F). 
i \ 1 

Equation (19) is expanded for large values of I resulting in the following: 

where S = - [ccl (C + l/C) + ~~ (CB + I/CB) + cl3 (CG + l/CC]. The expression for 
the product R,(W) L,(W) follows from Eq. (20) and assumes the form 

R,(w) L,(w) = exp { (-F)+O[exp( -y)] S exp 

=l+Sexp(-F)+.[,xp(-F)] (21) 

where the advantage was taken of the expansions for large 1. The product 
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R,(W) L[(M’) + 1 exponentially when I + 30. The truncated part P, of the infinite 
product in Eq. (15) is given as 

P,n=fi exp Sexp - m 
j=l i ( 

( +~lD’)+O[exp(-2(m+hilDn)]~ (22) 

where the truncation occurred after m terms. The magnitude of the truncated part 
P, of the infinite product is estimated by taking the logarithm of Eq. (22) 

ln(P,)=S f exp - 
j=l i 

(m+~lDn]+~,0[exp(-2(m~1’lDn)] 

=Sexp( -F)+O[exp( -?)I. (23) 

In the above, s= S exp (-Drc;h)/[ 1 - exp (- Dz/nlh)] and the sums define 
geometric sequences. The truncated part of the product assumes the form 

Pm,=exp{Sexp(-y)+O[exp(-yn)] 

=l+Sexp( -F)+O[exp( -y)]. (241 

The truncated part of the infinite product P, --f 1 exponentially as m -+ co. The dif- 
ference between truncation at term m and m -t 1 is given as 

Pm-P,+,=Zexp (-F)+O[exp(-y)] 

where s= s[ 1 - exp( - Dz//z)] and it approaches zero exponentially as m + a3. 
The above result suggests that the infinite product in Eq. (15) may be truncated 
after a very few initial terms. The numerical testing of this conclusion is described at 
the end of this section. 

The iteration procedure used to determine parameters uj and D in Eq. (1.5 ) is 
analogous to the case of a non-periodic channel. The actual iteration procedure, as 
described in Section 2.1.1, is carried out only for the middle segment (Fig. 3). The 
locations of corners, corresponding to all the remaining segments, are determined at 
each iteration step based on the condition of periodicity. In the case of a non-sym- 
metric channel, the new locations of corners along the upper wall are normalized at 
each iteration step to assure the same periodicity along the top and bottom of the 
channel. The procedure described above converges quite rapidly, even with a poor 
initial guess. The results are illustrated in Figs. 6 and 7. 

The effects of truncation of the infinite product in Eq. (15) were tested for the 
configuration shown in Fig. 6. The locations of corners were determined for a dif- 
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FIG. 6. (A) Coordinate system for a single symmetric segment fitted into a straight chacnei. 
(B) Coordinate system for a symmetric channel consisting of an infinite number of similar segments 
/periodic channe!). 

ferent number of segment pairs with the convergence criteria for the iterative 
process and the integration accuracy kept at a very low level. The results are sum- 
marized in Table I and suggest that only two terms in the infinite product need to 
be retained. The same conclusion was reached for the configuration shown in Fig. 7, 

2.3. Channels Boutzded 61, Curved Elemems 

Transformation (1) can be augmented to include channels bounded by curved 
wall elements. The curved element is considered as being made up of a large num- 
ber of straight line segments (Fig. 8) and the transformation (1) in the form 
appropriate for this case can be rewritten as 

1.26) 

In the limit n -+ 3c, the straight segment shrinks to zero, the turning angles ~-~rc are 
replaced by -xdfiiT the locations aj are replaced by Pi and the summation in 

A 

FIG. 7. (A) Coordinate system for a single non-symmetric segment fitted into a straight channei. 
(B) Coordinate system for a non-symmetric channel consisting of an infinite number of similar segments 
(periodic channel\. 



232 J. M. FLORYAN 

TABLE I 

Analysis of the Truncation Error in Transformation (15) Applied to the Configuration Shown in Fig. 3” 

Number of terms in Location of the 
the infinite product second corner 

Location of the 
third corner 

Real part of 
the constant R 

m a2 a3 WR) 

0 0.428094 1.15322 1.00001 
1 0.416613 1.28411 0.967716 
2 0.477204 1.28551 0.967403 
3 0.477213 1.28554 0.967398 
4 0.477213 1.28554 0.967398 

a (see Sect. 2.1.1 for details). Channel heights H= 1.0, /I = 1.0. The main triangle is formed by points 
(O.O,O.O), (0.5, -0.5), (1.5,O.O). 

Eq. (26) is replaced with an integral. Thus, the mapping for a continuous curved 
element becomes 

-$=Rexp sinh d ()v - 8) d/l . 1 I (27) 

In the above, 8 denotes the location of the points belonging to the curved elements 
in the computational plane and rc/I stands for the tangent to the curved element in 
the physical plane. The minus sign has been added to account for the fact that the 
turning angles are considered to be positive in the clockwise direction (Sect. 2.1) 
while tangents are positive in the counterclockwise direction. Equation (27 j 
includes Eq. (l), with the exception of the entrance and exit angles. When a corner 
is encountered, say at aj location, /-I becomes a step function, and the portion of the 
integral at the corner becomes 

sinhG(ic-t) 1 d/?= -ocjIn sinha(i+l-aj) 1 08) 

where aj is the step in p at the location d = a,, i.e., @j = /?,: - bj+. If the channel is 

FIG. 8. Mapping of a channel bounded by curved wall elements. 
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bounded only by straight wall segments, then Ctp = 0 except at the corners, where @ 
is a step function and the mapping (27) reduces to the form (1). Equation (27) is, 
therefore, capable of mapping channels with shapes of a very general nature such as 
shown for example in Fig. 9. The general form of the mapping may be written as 

where r~ corners have been extracted and k represents the number of curved 
segments. The mapping is complete when the iocations of corners aj and curved 
segments P in the computational plane, corresponding to a given configuration in 
the physical plane, are established and the complex constant R is known. 

23.1. Determination q/‘ the Parameters of the TranTformation 

The angle fl appearing in Eq. (29) depends on the geometry of a particular cur- 
ved wall segment and is a function of the location along the surface of this segment. 
The curved segments in the transformation (29 ) may be handled by subdividing 
them into elements and approximating the ,L? variation on an element with an 
appropriate analytic function of 2. Here it is assumed that the wall shape is analytic 
on the elements, and therefore care should be taken in making sure that all discon- 
tinuities, i.e., corners, curvature discontinuities. etc., appear at the element end 
points. 

The shape of the wall element between 112 and WI $ 1 is considered to be analytic 
and j3 is approximated as 

fl= elm + cl,,, sinh $ (d - 6,) + cjnl cash G (t; - 6,) (30) 

where 6, = #CC,,, + L,, I ) denotes the location of the middle point of the element in 
the computational plane and clrlrr c:,,,, and c3nz are constants. The integral in 
Eq. (29) is evaluated analytically resulting in the following form of the transfor 
mation: 

where n denotes the number of elements and gzm and g,, are defined as 

gzm = 
sinh[Cn/4h)(L,n+I -/,,)I sinhr(n.4hH~r,,+, ~ ‘$,,!I 

. 

ctgh(x/&)(bc _ &,, + I sinhClr:‘~h)l- Jo,1 
X 

ctgh(n,‘4h),,,? - 6,) )]- 
‘exp -2sinh-&(&,X+I-L, 

[ 
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sinh(x/2/2/l)(lz, _ &,+ 1 j 

1 
coshCtK4k)(~m+t- Jm)l 

g3m = sinh(rr/2h)(MJ - C,) ctgh(n/4h)( ,,1, _ &, + 1) coshC(n!2h)(n - Su)J 
ctgh(rr/4/r)(w - &,,) 1 

(33) 

A corner has been added at the beginning of each element in order to simplify the 
notation. The case of c(, =0 corresponds to an element without a corner. 
Equation (31) can be integrated in the manner described in Section 2.1.1. Each 
element corresponds to one integration step. Equation (6) is used to handle 
singularities associated with corners and the contributions due to g;zm and g<;‘nl. 
which are non-singular, are obtained by evaluating these terms at the integration 
step mid-point. 

The constants in Eq. (30) are to be evaluated from the matching of the assumed 
surface slope distribution with the surface slope and the element endpoints. The 
particular constants required in the transformation (3 1) are defined as, 

a ?9Z+l - Pm 
C 
2m = 2 sinh(n/4h)(F,, + r - &,) 

~,-i1/2)(Pm+,+P,) 
C 
3nz = 1 - cosh(rc/4/r)(&,, + 1 - 8,) 

(34) 

where Pm n, Pm + 1 rc denote surface slope at the beginning and end of the element 
respectively and 8,, stands for the slope of a straight line connecting points m and 
m-k 1. 

The location of the element endpoints t;, in the computational plane, 
corresponding to their known locations z,, in the physical plane, have to be 
established through a method of successive approximations. The procedure is 
exactly the same as described in Section 2.1.1. The d,,,‘s are guessed initially and are 
iteratively corrected by Eq. (5), where the lzCj and ugi are replaced with G,, and 8,. 
Similarly, (RI is established through the iterations, while arg(R) assumes the values 
given in Section 2.1.1. The process converges as rapidly as in the case of a channel 
bounded by straight wall elements. 

2.4. Periodic Channels Bourzded bJ3 Curved Elements 

The extension of transformation (29) to the case of periodic channels is 
analogous to the case of periodic channels bounded by straight elements, described 
in Section 2.2. The transformation has the form 
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Fri;. 9. (A) Coordinate system for a single segment of an arbitrary shape Wed into a straight chan- 
nel. (B) Coordinate system for a channel consisting of an infinite number of similar segments of arbitrary 
shape (periodic channel I. 

where all the symbols have the same meaning as in Eqs. ( 15 j and (29). The trans- 
formation is complete if all parameters, i.e., R, D. a,, and 8, corresponding to a par- 
ticular configuration of interest, have been determined. The numerical procedure is 
analogous to the case of non-periodic channels. as described in Section 23.1. The 
actuai iteration procedure is carried out only for the middle segment (Fig. 3) as in 
the case of periodic channels bounded by straight wall elements (Sect. 2.2.1). The 
procedure converges quite rapidly, even with a poor initial guess. The results are 
illustrated in Fig. 9. In this particular case, the parameters of the transformation 
were determined with sufficient accuracy with the infinite product in Eq. (35) trun- 
cated after two terms. 

3. EXTERNAL CONFIGURATIONS 

External flows are those where the expanse of the fluid is unbounded. Flow of 
fluid adjacent to a solid boundary, but otherwise unbounded, is then of interest and 
the term external configuration refers here to the shape or configuration of such a 
boundary. The most obvious example is the case of flow next to a wall. This case 
has been posed and solved by a method based on nonlinear integral relations by 
Men&off and Zemach [S]. 

3.1. Walls Formed Hal Straight Elements 

An arbitrary wall, formed by straight elements in the physical plane. is mapped 
into a straight wall in the computational plane. The appropriate transformation has 
been described by Davis [Z] and is illustrated in Fig. 10. The following presen- 
tation is limited to a short outline. 

The transformation has the form 



236 J. M. FLORYAN 

z PLANE (physical) w - PLANE (computational) 

FIG. 10. Mapping of an arbitrary wall into a straight wall. 

where R is a complex constant, n determines the number of corners, W’S denote 
corner turning angles and uis defined the locations of corners in the computational 
plane (Fig. 10). Angles ctn are taken to be positive for the clockwise rotation. The 
above mapping is known as the Schwarz-Christoffel transformation. 

The transformation is complete provided that the locations of points a in the 
computational plane, corresponding to the corners in the physical plane, are known 
and the complex constant R has been determined. This is achieved by applying the 
numerical procedure described in the next section. 

3.1.1. Determination of the Parameters of the Transformation 

The difficulties in applying transformation (36) are due to the fact that the 
relation between a particular wall shape, and the numerical values of the 
parameters of the.appropriate transformation, is not explicit, similarly as in the case 
of the interior contigurations (Sect. 2). Therefore, the required parameters have to 
be determined through a method of successive approximations. 

The relation between z and w’ is given as 

s 

H 
z= g(w) dw + N (37) 

,“” 

where g(w) stands for the right-hand side of Eq. (36). The initial point w,, in the w 
plane can be chosen arbitrarily within the domain 0 < Im(Jc,), 
- cc < Re(,lJo) < + c;cj, and it is taken to be zero throughout this paper. Once the 
initial point iv0 has been chosen. the constant N controls the location of the wall in 
the 2 plane. The constant N is taken to be zero throughout this paper and thus the 
origins of the z and M’ planes coincide. If the n turning angles a, rt, z2 z,..., c1,7c are 
given, the shape of the wall in the z plane is determined uniquely by the choice of IZ 
points a, , az ,.... a, in Eq. (36) and is independent of the particular values of the 
constants w,, and N in Eq. (37) and R in Eq. (36). The constant R controls the scale 
of the wall through the value of IRl and its orientation through the value of arg(R). 
According to the Riemann’s mapping theorem [ 11, just three of the points a/ may 
be chosen arbitrarily. The reader should note that the total number of corners in 
Eq. (36) is n + 1, where n corners appear explicitly and one degenerate corner enters 
the equation only implicitly. The degenerate corner corresponds to infinity in the 
upper half plane and may be identified by considering transformation of the upper 
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half plane into a polygon. One point belonging to the boundary of the transformed 
domain is, therefore, fixed due to the nature of the transformation and two points 
remain to be chosen arbitrarily. This choice is accomplished throughout this paper 
by placing the first corner at the origin of the IL’ plane (ai = 0 ), and the last corner 
at w = (1.0, O.O), i.e., a,, = 1. All the remaining parameters are uniquely defined and 
have to be determined from Eq. (36) as a part of the solution. 

The complex constant R and the locations ui of all the corners, with the excep- 
tion of the first and the last one (a, = 0, a,, = I), have to be determined through a 
series of successive approximations. The following outline of tbe iteration procedure 
is adopted from [3]. 

An initial guess is made for R and for locations of corners aj. The 0,‘s are picked 
along the real axis such that ujP I < uj < L+ + i. Integration is carried subsequently 
from the origin of the $1’ plane along the wall, to determine locattons of the corners 
in the physical plane. The broken line in Fig. 11 illustrates a typical shape of the 
wall. corresponding to the assumed locations of the corners in the computational 
plane. The location of the last corner in the computational plane is known CZ,~ = 1. 
and its computed location in the physical plane is made to coincide with the 
specified location through the appropriate selection of constant R. The shapes of 
both figures are then matched through the appropriate change in location of the 
remaining corners in the computational plane. The new guess is made for the 
location of corners by assuming that the u-;s should be resealed according to the 
scaling indicated by errors in the distances between the corners in the physica! 
plane: 

Here the subscript c denotes the correct values. g stands for the guessed values, ,/ 
denotes the corner number, and k is a scaling parameter such that CI>.,! = 1. The 
above procedure converges quite rapidly, even with a poor initial guess. Results for 
one of the cases considered are displayed in Fig. 18. 

w - PLANE 

FIG. 11. Illustration of the iteration procedure for mapping of a wall 



238 J. M. FLORYAN 

The numerical integration of Eq. (36) is complicated due to singularities present 
when 01~ c 0. The appropriate integration formula, extracting singularities 
analytically, has been developed in [2] and has the form 

(39) 

where subscript m denotes the integration step. The above formula is of the second- 
order accuracy type. 

3.2. Periodic Walls Formed by Straight Elements 

Extension of transformation (36) to the case of periodic walls is obtained follow- 
ing a procedure analogous to the one described in Section 2.2. The procedure is 
explained with the help of the wall represented by the bottom of the channel shown 
in Fig. 3. The transformation has the form 

where the subscript f, which denotes a particular triangle, assumes all integer values 
between I= --n and /=n. The reader should note that the turning angles, 
corresponding to the corners located on the borders between different segments, are 
defined as those between the appropriate wall element and the real axis. The total 
turning angle associated with each segment (triangle) is c(~ + a2 + CI, = 0. The con- 
figuration in the physical plane becomes periodic when the number of triangle pairs 
increases indefinitely II --+ co. It is obvious that if the right-hand side of Eq. (40), in 
the limit n + ic, describes a certain periodic configuration in the w plane, the 
corresponding configuration in the z plane is also periodic. The correctness of the 
reverse statement can be demonstrated as in the case of periodic channels 
(Sect. 2.2). 

Extension of transformation (40) to a wall consisting of repeatable segments of 
an arbitrary shape, when a particular shape is formed out of straight elements, is 
straightforward. 

I= +cG;=n 

-f$=R n n (w-ID-aj)“! 
/=-CC,=1 

(,41) 

In the above, D denotes the length of the segment in the w plane, n stands for the 
number of corners in the segment, aj’s denote locations of corners in the segment 
and OL~‘s are the corner turning angles. The symbols are illustrated in Fig. 5, where 
locations of the corners inside the segment are defined relative to the left corner. 
The bottom part of the channel in Fig. 5 represents the wall, and the top should be 
ignored. The reader should note that the turning angles at the edges of the segment 
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are those between the appropriate wall element and the real axis. The sum of the 
turning angles for a segment is zero. Transformation (41) is complete provided the 
complex constant R is known and the locations of corners ai and the length D of 
the segment, corresponding to a particular channel in the physical plane, have been 
determined. 

32.1. Deterwkation qf the Parameters on the Tran.$ormariorz 

Mapping of a periodic wall into a straight wall is described by Eq. (41) where the 
mfinite product may be truncated after a finite HZ number of terms. The estimation 
of the truncation error is explained with the help of the configuration shown in 
Figs. 3 and 4, where the bottom of the channel represents the wall. Equation (41 j is 
rewritten as 

where 

R,(u’)=(,~‘-ID)“L(ll.-/D-TT!a,[~c,- (l+I)D]“’ 

L,(wj= (w+1D)“‘(~+lD- T)“[M,+(/- 1) D]“‘. 

In the above M(H~ contains terms arising due to the middle segment (segment 0 in 
Fig. 3j, R,(ul) contains terms due to the ith segment on the right side and L,(riti 
stands for the terms due to the Ith segment on the left side (see Fig. 3). All the 
remaining symbols are explained in Figs. 3 and 4. The Eth term in the product may 
be written as 

and its behavior for large I is estimated by taking logarithm of Eq. (43). 

where A = w’/D’, B = (II’ - Tj’/D’. C = (1~ ~ D)‘jD’. E.quation (44) is expanded for 
large values of I resulting in the following: 

ln[R,(wj L,(w)] = SIP’ + 0(1-4) (451 

where S = -‘x1 A - a, B - a3 C. The expression 
from Eq. (45j and assumes the form 

for the product R,( II’ j L,(W) follows 

RI(~r~jL,(~~)=exp[SI~‘+O(/-‘)] = 1 +SI-‘+ (46) 
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where the advantage was taken of the expansions for large 1. The product 
RI(~~l) L,(W) -+ 1 as Ip2 with I -+ CG. The truncated part P,,, of the infinite product in 
Eq. (41) is given as 

P,, = fi exp(S(m +j)j’+ O[(m +j)-“11 
j=l 

(47) 

where the truncation occurred after m terms. The magnitude of the truncated part 
P, of the infinite product is evaluated by taking the logarithm of Eq. (47). 

In(P,n)=S 5 (~+j))~+ f U[(m+j)-4]~Sm~‘+U(m-3j (481 
j= 1 j=l 

where the estimation of the sums is described in Appendix A. The truncated part of 
the product is estimated to be 

P,,dexp[Srn~‘+O(m~~3)]=1+Sm~‘+S’m~’+U(m~3). (49) 

The truncated part of the infinite product P,, + 1 no slower than in-’ when 
m + co. The difference between truncation at term m and m + 1 is given as 

PI?-P,,I =exp S f (m+l+j)-2+0((m+1+j)~4) 
L .,‘I 1 

x{exp[S(m+1)~‘+O((m+1)-4)]-l~ 

dexp[S(m+ 1)~‘+O((m+ l)j’)] 

x(exp[S(m+l)-‘+0((m+l)-4j]-lj 

=S(m+ l))2+O((m+ 1))3) (50) 

and it approaches zero no slower than (m + 1) -’ as wz -+ CY.I. The estimation of sums 
given in Appendix A and expansions for large nz were used when deriving Eq. (50). 
The results suggest that the infinite product in Eq. (41) may be truncared after a 
finite number of terms, however, this number may be considerably larger than the 
one for the case of periodic channels. The numerical testing of the above con- 
clusions is described at the end of this section. 

The iteration procedure used to determine parameters ai and D in Eq. (41) is 
analogous to the case of a non-periodic wall. The actual iteration procedure. as 
described in Section 3.1.1, is carried out only for the middle segment (Fig. 3) and it 
predetermines the length D as unity. The locations of corners, corresponding to all 
the remaining segments. are determined at each iteration step based on the con- 
dition of periodicity. The procedure described above converges quite rapidly. even 
with a poor initial guess. The results are illustrated in Fig. 12. 

The effects of truncation of the infinite product in Eq. (41) were tested for the 
configuration shown in Fig. 6, where the bottom of the channel was assumed to 
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FIG. 12. (‘4) Coordinate system for a single segment titted into a straight wall. (B)Coordinate 
system for a wall consisting of an infinite number of similar segments (periodic wall). 

represent the wall. The locations of corners were determined for different numbers 
of segment pairs with the integration step of 0.001 and with the convergence criteria 
for the iterative process kept at a very low level ( lo--“). The results are summarized 
in Table 2 and suggest that at least ten terms in the infinite product need to be 
retained to provide a three digit accuracy. The reader may recall that only tWG 

terms were needed for a periodic channel. The method presented here is effective, 
however, the large number of terms needed to represent a periodic wall may create 
an unnecessarily high demand on computer resources and may facilitate search for 
another solution to the coordinate generation problem. 

TABLE 11 

Analysis of the Truncation Error in Transformation (41) Applied to the Configuration 
Represented by the Bottom of the Channel in Fig. 3” 

Number of terms in 
the infinite product 

Location of the 
second corner 

Real part of 
the constant R 

r?2 Re(R) 

0 0.37 1203 1.20983 
I 0.371178 1.40960 
2 0.371198 1.44526 
3 0.371’01 1.46072 
4 0.371202 1.46937 
6 0.371203 1.47873 
8 0.371203 I .48371 

10 0.371203 1.38680 
12 0.371203 1.48890 
14 0.371203 1.49043 
16 0.371203 1.49159 
18 0.371203 ! .49249 
20 0.371203 i.49322 

’ (see Sect. 3.2.1 for details). The main triangle is formed by points (0.0, O.O), (0.5, -0.5 ). (1.5,0.0). 
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3.3. ?V& Formed by Curved Elements 

Transformation (36) can be augmented to include walls bounded by curved 
elements [2]. The curved element is considered as being made up of a large number 
of straight line segments (bottom of the channel on Fig. 8) and the transfor- 
mation (36) in the form appropriate for this case can be rewritten as 

2 = R exp 1 . (51) 

In the limit as 12 -+ cc the straight segment shrinks to zero, the turning angles u,rc 
are replaced by -7cd/3/, the locations a/- are replaced by t;, and the summation in 
Eq. (51) is replaced with an integral. Thus, the mapping for a continuous curved 
element becomes 

g=Rexp ‘ln(~l- 8) d/I 1 (52) 

In the above, 8 denotes the location of the points belonging to the curved elements 
in the computational plane and rc/j stands for the tangent to the curved element in 
the physical plane. The minus sign has been added to account for the fact that the 
turning angles are considered to be positive in the clockwise direction (Sect. 3.1) 
while tangents are positive in the counterclockwise direction. Equation (52) 
includes Eq. (36) as a special case. When a corner is encountered, say at a j 
location, B becomes a step function and the portion of the integral at the corner 
becomes 

where mj is the step in p at the location G = a,-. The general form of the mapping 
may be written as 

2 = R exp rgf 0~~ ln(rv - uj) - mfli i”” ln(n, - 8) db] 
j=l m=l Pm 

(54) 

where IZ corners have been extracted and k represents the number of curved 
segments. The mapping is complete when the locations of corners ai and curved 
segments 8 in the computational plane, corresponding to a given configuration in 
the physical plane, are established and the complex constant R is known. This may 
be achieved by applying the numerical procedure described in the next section. 

3.3.1. Determination of the Parameters of the Transformation 

The detailed description of the procedure leading to the determination of the 
parameters of the transformation (54) is given in [2]. The procedure used in this 
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paper has been adapted from [2] with modifications. The following presentation is 
limited to a short outline. 

The angle fl appearing in Eq. (54) depends on the geometry of a particular cur- 
ved wall segment and is a function of the location along the surface of this segment. 
The curved segments in the transformation (54) may be handled by subdividing 
them into elements and approximating the fl variation on an element with an 
appropriate analytic function of z. Here it is assumed that the wall shape is analytic 
on the elements, and therefore, care should be taken in making sure that all discon- 
tinuities, i.e., corners, curvature discontinuities, etc., appear at the element end 
points. 

Shape of the wall element between nz and m + 1 is considered to be anaiytic and 
/I is approximated as 

IR,n=cl,,+cz,,(d-t,)+CJ,(C--L,,)2 i55) 

where 6, = $(&,, + G,, + r ) denotes location of the middle point of the element in the 
computational plane and elm, c?,~, cXm are constants. The integral in Eq. (54) is 
evaluated analytically resulting in the following form of the transformation: 

where n denotes the number of elements and gznr and g3nl are defined as 

(57) 

A corner has been added at the beginning of each element in order to simplify the 
notation. The case of LX,,, =0 corresponds to an element without a corner. 
Equation (56) can be integrated in the manner described in Section 3:l.l. Each 
element corresponds to one integration step. Equation (39) is used to handle 
singularities associated with corners and the contributions due to glm-“zrr and 
g- -‘jrn, which are non-singular, are obtained by evaluating these terms at the 
in:gration step midpoint. 

The constants in Eq. (55) are to be evaluated from the matching of the assumed 
surface slope distribution with the surface slope at the element endpoints. The par- 
ticular constants required in the transformation (56) are defined as 

B 
Chl = 

m+ 1 -8n-l 

c nz+1-b,,, 

a8 c m+I+Ilm-2fJ,) 
3n1= (&m+l-C,,*): 

(59) 
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where P, n, 8, + i n denote surface slope at the beginning and end of the element 
respectively and tI,,, stands for the slope of a straight line connecting points wz and 
m+ 1. 

The location of the element endpoints C,, in the computational plane, 
corresponding to their known locations z,, in the physical plane, have to be 
established through a method of successice approximations. The procedure is 
exactly the same as described in Section 3.1.1. The &,H’s are guessed initially and are 
iteratively corrected by Eq. (38), where the ad and ugj are replaced with eCj and 8,. 
The constant R is established in a similar manner. The process converges as rapidly 
as in the case of a wall formed by straight segments. 

3.4. Periodic Walls Formed by Curtled Elements 

The extension of transformation (54) to the case of periodic walls is analogous to 
the case of periodic walls formed by straight elements, described in Section 3.2. The 
transformation has the form 

where all the symbols have the same meaning as in Eqs. (41) and (54). The trans- 
formation is complete if all the parameters, i.e., R, D, uj, and b, corresponding to a 
particular configuration of interest, have been determined. The numerical procedure 
is analogous to the case of non-periodic walls, as described in Section 3.3.1. The 
actual iteration procedure is carried out only for the middle segment (Fig. 3) as in 
the case of periodic walls bounded by straight elements (Sect. 3.2.1). The procedure 
converges quite rapidly, even with a poor initial guess. The results are illustrated in 
Fig. 13. 

FIG. 13. (A) Coordinate system for a single segment of an arbitrary shape fitted into a straight wall. 
(B) Coordinate system for a wall consisting of an infinite number of similar segments of arbitrary shape 
(periodic wall). 
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4. METRIC COEFF'ICIEN-I 

Transformations described in this paper may be used to generate several differen; 
coordinate systems, which may be conformal or nonconformal, orthogonal or non- 
orthogonal [3 1. The simplest coordinate system is defined by Iines f = const. and 
ff = const. in the computational plane (n’= 5 + irl). The metric coefficients with 
define the ratio of the differential distances in the I = s + in, plane to the differentials 
of the coordinate parameters in the IV = < + irl plane, have the form: 

It can be shown that in the case of a conformal mapping 

and the coordinate system is characterized by only one metric coefficient, which caE 
be easily determined from Eq. (35) or (60). 

5. POTENTIAL FLOW 

The determination of the parameters of transformations (35) and (60) is 
equivalent to the solution of the Laplace equation and may be conveniently inter- 
preted as a solution of the potential flow problem in a periodic channel or over a 
periodic wall. The complex potential, CI = @ + iY’, in the transformed plane has the 
form: 

The complex velocity at a point in the physical plane is given by 

The constant A may be determined from the known flow condition. When, for 
example, the flow rate Q through the channel is known, A = Q:/z. The pressure field 
can be easily specified in terms of the pressure coefficient 

P-P0 A’ 
cP=(1,12)pciE,=1-@ 

where p. and U, are pressure and velocity at a reference point and h^ is given by 
Eq. (62). 
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6. CONCLUDING REMARKS 

A coordinate generation method for flows in periodic configurations has been 
developed. The method involves, in the case of internal configurations, a conformal 
mappig of a channel of an arbitrary shape in the physical plane into a straight 
channel in the computational plane, and, in the case of external configurations, a 
conformal mapping of a wall of an arbitrary shape in the physical plane into a 
straight wall in the computational plane. The mappings, which are given explicitly, 
involve parameters defined in the computational plane and thus not known a priori 
for the specified configuration in the physical plane. A method of successive 
approximations, leading to the determination of the required parameters, is present- 
ed. The method has a very simple logic, is easy to program and converges quite 
rapidly, however, it may require considerable computing resources in the case of 
periodic walls. The method is very effective. Several configurations of a rather 
extreme geometry have been solved without encountering difficulties. As a 
byproduct: the method produces a solution of the potential flow problem for the 
given configuration. 

APPENDIX A 

The estimation of the magnitude of the sum 

s,= f 
k-m+ I 

is made by considering the inequality 

(AlI 

(A21 

which follows from the basic property of integrals, i.e., 

nz(h-~)~j~f.(.~)dxg~~~-a) 
(I 

where m and A4 are the minimum and maximum of the function f(x) in (a. b). 
Equation (A2) may be written for k = m, nz + 1, ITI + 2,..., 

(A31 

s m+k+l 1 1 
m+k Ir”“(m+k+ 1)” 

. . . 
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Summation of all of the above inequalities results in 

and gives the estimate of the sum (Al ) 
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