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A conformal-mapping-based coordinate generation method for periodic configurations has
been developed. A channel of an arbitrary shape in the physical plane, representing internal
configurations, is mapped into a straight channel in the computational plane, and a wall of an
arbitrary shape in the physical plane, representing external configurations, is mapped into a
straight wall in the computational plane. The parametcrs of the transformations have to be
determined through a method of successive approximations. A simple iteration scheme. that
converges quite rapidly even with a poor initial guess, is presented. Solutions for different con-
figurations are displayed to illustrate the capabilities of the method. € 1986 Academic Press, Tnc.

{. INTRODUCTION

Numerical grid generation is a fairly common tool in computational fluid
dynamics, however, its applications extend to solutions of partial differential
equations arising from all physical problems involving field properties. The com-
mon goal of different grid generation mecthods is to construct boundary fitted coor-
dinates. These coordinates are in general curvilinear. The field equations are con-
siderably simplified if the coordinates satisfy the condition of orthogonality, and are
characterized by only one metric coefficient if the coordinates are also conformal.
The simplicity of the field equations written in terms of the conformal coordinates is
the major motivation for working with such coordinates.

There is quite a variety of coordinate generation methods based on conformal
mappings [3, 4]. The most robust one utilizes the Schwarz- Christoffel type trans-
formations and is capable of dealing with external [2] and internal {37 con-
figurations of arbitrary shape. This paper describes an extension of this method to
the case of periodic configurations. The periodic configurations are defined here as
configurations consisting of an infinite number of segments of similar form and size.
The basic idea of the method is to map a periodic wall, made up of segments of an
arbitrary shape in the physical plane, into a straight wall in the computational
plane, and similarly, to map a periodic channel from the physical plane info a
straight channel in the computational plane. Thus, the solution of the flow problem
may be carried in the computational plane with the help of a simple rectangular
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grid. Transformations being presented have a semi-analytical form; that is the form
of the transforming function is known, however its parameters are not. The
parameters are defined in the computational plane, and thus, they are not known a
priori for the configuration of interest in the physical plane. Simple numerical
procedures permitting determination of the parameters are described. These
procedures have a very simple logic, are very effective and are easy to program.

Section 2 deals with internal configurations. Transformation for a channel bound-
ed by straight wall elements is described in Section 2.1 and its extension to periodic
configurations is given in Section 2.2. Channels bounded by curved wall elements
are discussed in Section 2.3 and the periodicity condition is introduced in Sec-
tion 2.4. Section 3 deals with external configurations. Walls formed by straight
elements are discussed in Section 3.1 and the periodicity condition is described in
Section 3.2. Section 3.3 describes walls formed by curved elements and Section 3.4
gives extension of the appropriate transformation to the case of periodic walls
formed by elements of arbitrary shape. Section 4 describes metric coefficients for a
conformal system. Determination of the parameters of the transformtion is
equivalent to the solution of the potential flow problem in a periodic configuration.
Section 5 describes such solutions. Streamlines of the inviscid flow behave as
optimal coordinates in boundary-layer analysis [5], and therefore, the coordinates
described in this paper are particularly well suited for the incorporation of the scal-
ing typical for the high Reynolds number flows.

2. INTERNAL CONFIGURATIONS

Internal flows are those where the fluid is surrounded by solid boundaries and
the term internal configuration refers here to the shape or configuration of these
boundaries. The most obvious example is the case of a flow trough a channel

2.1. Channel Bounded by Straight Elements

An arbitrary channel, bounded by straight wall elements in the physical plane, is
mapped into a straight channel in the computational plane. The appropriate trans-
formation has been introduced by Sridhar and Davis [6]. The transformation has
been described in detail by Floryan [3] and is illustrated in Fig. 1. The following
presentation is limited to a short outline. The transformation has the form,

dz wnt f=nlh o oom % L
Zh—szeXp [5/1—((/)_5)] Il [smhﬂ(ur—aj)} (1)

F=1

where R is a complex constant, » determines number of corners, an’s denote corner
turning angles, a’s denote locations of corners in the computational plane and the
remaining symbols are explained in Fig. [. Angles an are taken to be positive for
the clockwise rotation when the channel is circled in the counterclockwise sense.
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z - PLANE (physical) w - PLANE (computational)
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FiG. 1. Mapping of an arbitrary channel into a straight channel.

The transformation is completed provided locations of the points a in the com-
putational plane, and corresponding to the corners in the physical plane, are known
and the complex constant R is determined. This is achieved by applying the
numerical procedure described in the next section.

2.1.1. Determination of the Parameters of the Transformation

The difficulties in applying transformation (1) are due to the fact that the relation
between a particular channel shape, and the numerical values of the parameters of
the appropriate transformation, is not explicit. The required parameters have to be.
therefore, determined through a method of successive approximations.

Transformations being considered in this paper are of the Schwarz—Christoffel
type. The relation between the z and w planes is given as

[

o= J gwidw+ N
wo

where g(w) stands for the right-hand side of Eq. (1). The initial point w, 1n the
wplane can be chosen arbitrarily within the domain 0<Im{w,)<4,
—x < Re{wyi< + o0, and it is taken to zero throughout this paper. Once the
initial point w, has been chosen, the constant N controls the location of the channel
in the z plane. The constant N is taken to be zero throughout this paper and thus
the origins of the z and w planes coincide. If the » turning angles o, a-7,... 2,7
are given, the shape of the channel in the z plane is determined uniquely by the
choice of » points a,, a,,.., a, in Eq. (1) and is independent of the particular values
of the constants w, and N in Eq. (2) and R in Eq. (1). The constant R controis the
scale of the channel through the value of |R| and its orientation through the value
of arg(R}. According to the Riemann’s mapping theorem [17], just three of the
points g; may be chosen arbitrarily. The reader should note that the total number
of corners in Eq. (1) is n+ 2, where 1 corners appear explicitly and two degeneraie
corners enter the equation only implicitly. One of the degenerate corners
corresponds to the left end of the channel and the second corresponds to the right
end. Therefore, two points belonging to the boundary of the transformed domain
are fixed due to the nature of the transformation, and omne point remains to be
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chosen arbitrarily. This choice is accomplished throughout this paper by placing the
first bottom corner at the origin of the w plane (i.c., a, = (0, 0)). All the remaining
parameters are uniquely defined and have to be determined from Eq. (1) as a part
of the solution.

The complex constant R and the locations a; of all the corners, with the excep-
tion of the first bottom corner, have to be determined through a series of successive
approximations. The following outline of the iteration procedure for symmetric
channels is taken from [3].

The constant R in Eq. (1) can be written as R = |R| exp(—in¢), where ¢n is the
angle shown in Fig. 2 and |R] is not known. An initial guess is made for |R| and for
locations of corners a;. The a/s are picked along the real axis such that
Re(a; _ ) <Re(a;) <Re(a;, ), where Re denotes the real part. The new value of |R|
is adopted by imposing the condition

(0, 1)
Im [J g(w) dw} =H (
(

0.0)

(¥
—

where Im denotes an imaginary part, g(w) stands for the right-hand side of Eq. (1)
and the remaining symbols are illustrated in Fig. 2. Integration is carried out sub-
sequently with the new value of |R| along the bottom of the channel to determine
the locations of the corners in the physical plane. The computed locations do not,
in general, coincide with the specified locations.

The broken line in Fig. 2 illustrates a typical shape of the channel. corresponding
to the assumed locations of corners in the computational plane. The corner turning
angles of the computed channel are the same as the turning angles of the specified
channel, however, the shapes of both channels are not identical due to the dif-
ference in distances between the corners. The shapes of both figures can be matched
through the appropriate change in the location of the corners in the computational
plane. The new guess is made for the location of the corners by assuming that the

Im{z)¢ z-PLANE

z4 = Zj+ 1801 - Re(z)
1 -1 4
Im(w) w - PLANE
h
HiEa R
& aj g Re(w)

Fi1G. 2. Tllustration of the iteration procedure for a mapping of a symmetric channel.
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a;’s should be rescaled according to scaling indicated by errors in the distances
between the corners in the physical plane:

lacj_ar(jfl)‘_‘Z(‘j—zf(ifi)l (

W

lag— Agij—1)l |Zgj— Zgii—1)]

Here subscript ¢ denotes correct values, g stands for the guessed values, and j
denotes corner number. The above procedure is repeated until convergence is
achieved. The process converges quite rapidly, even with a poor initial guess.
Results for one of the cases considered are displayed in Fig. 2.

The numerical integration of Eq. (1) is complicated due to singularities present
when 2,<0. The appropriate integration formula, extracting singularities
analytically, has been developed in [3] and has the form

“m+1" -m

_ —ﬂ:(“.m+wm+l)(¢“‘5) 1-n T Eir;x"j:”_ l:lrl"“a,'\ﬁi'l L
_RexpL M (Aw) o H F, [w] (6)

j=1 0’/+1 Won

where subscript m denotes the integration step. The function F; is defined as

, sinh(z/2h)(w —a, ) 1
F. V)=
/) [ e

’

and its value evaluated at the middle of the integration step i(w,,+ 1w, .,) is
denoted by F,. Formula (6) is of the second-order accuracy type.

2.2. Periodic Channels Bounded by Straight Flements

A description of the transformation mapping a channel, consisting of an infinite
number of segments of the same geometry in the physical plane, into a straight
channel in the computational plane, is carried out with the help of the configuration
showa in Fig. 3. The channel shown has a straight top; its bottom consists of

Im(2) f z - PLANE

n tnangles n triangles

-2n - s £ Re(2)

—2n+1

FiG. 3. Channel with (2rn + 1) triangular intendations on the bottom.
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(2n + 1) triangular indentations of the same form and size. The transformation for
this particular channel is obtained from Eq. (1).

dz a2

I=n . T o] . b8 2 . T a3
o RI:I_L [smhﬂ(w-az,)] [smhﬂ (w—aQ,H):I l:smhﬂ (w—az,”)]
(7)

where subscript /, which denotes a particular triangle, assumes all integer values
between /= —n and /=n. The reader should note that the turning angles,
corresponding to the corners located on the borders between different segments, are
defined as those between the appropriate wall element and the real axis. The turn-
ing angle associated with each segment (triangle) is a;+a, +o3=0. The con-
figuration in the physical plane becomes periodic when the number of triangle pairs
becomes infinite # — co. It is obvious that if the right-hand side of Eq. (7) in the
limit as #— oo describes a certain periodic configuration in the w plane, the
corresponding configuration in the zplane is also periodic. It remains to be
demonstrated that the reverse statement is true.

The periodicity of a configuration in the w plane, corresponding to a periodic
configuration in the z plane, is shown by considering the distance between two
corresponding points belonging to two adjacent segments of the channel, as shown
in Fig. 4. The term “corresponding points” refers here to points belonging to dif-
ferent segments of the channel, with each point assuming the same relative position
in the segment to which it belongs. The distance between two adjacent
corresponding points is given as

'WZ+1 i .
e (AL (8)

W
where g(w) stands for the right-hand side of Eq.(7), z¥ and z},, denote the
locations of the corresponding points belonging to segments number &£ and £+ 1 in
the physical plane, and w¥ and w},, denote locations of the same points in the
computational plane (Fig. 4). The condition of periodicity requires this distance to
be constant regardless of the particular pair of segments being considered, that is,

s ok _ %k __ %
Tkl " Zk = Zkv2 " Th41e 9)
Im(z) 7 - PLANE Tlmw Tlm(v_u)
E— w - PLANE  w - PLANE
e s
02, eZ_, o2 h! ‘EW& S oWy,
k o+ 1 k+2 | « it ka2
] Re(z) N 5 Reyw)
|D D D |Re(w)

Fic. 4. Demonstration of the periodicity of the mapping (see Sect. 2.2).
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The above relation is equivalent to

Wi+ 2

glw)dw= J giw) dw (13

J‘W/):ﬁ- 1
w,’: w,:+ 1

and is satisfied if the integration intervals and the integrands are equivalent. The
equivalence is shown by introducing a new variable W defined as

W=w-—(wfF, ,—wf. (i

The new variable is obtained through a parallel translation of the coordinate
system w along the real axis by a distance D= |w}, |, —w}. The integral on the
right-hand side (RHS) of Eq. (10), when expressed in terms of the new variable .
assumes the form

I=+x

h'f+1* x . 3 — 4 )
RHS—-—[ ‘ R ‘n {smh-—[n— (ay— D)]} {mnhg;—l[w—(az,H—D)}J&

*
Yy
k

S

VR B .
x«{smh,,—,[w—(az,”—D)]} dw. (22
il
The above expression is equivalent to the left-hand side of Eq. (10) only if
WE =Wl =wi —wh, ay—D=ay;_y .
{13}
ay i~ D=ay,_1)¢15 yyr—D=as 142

Conditions given above are satisfied if the configuration in the computational plane
is periodic. The required equivalence is shown explicitly by substituting Eq. {13}
into Eq. (12) and changing the indices j=/—1:

J=+x x1 x2
RHS = J "R n [smh———(w j] [smh—liu /+1)]

wh 2h

n {14
. T 7o
X [smh o (w—ay, 2)} daw.

The description of the transformation mapping a periodic channel in the physical
plane into a straight channel in the computational plane has been carried out up to
this point with the help of a particular configuration shown in Figs. 3 and 4. Exten-
sion of transformation (7) to a channel consisting of repeatable segments of an
arbitrary shape, when a particular shape is constructed out of straight elements, is
straightforward.

+oc j==n

dw: H Y [sinh%(w—lD—aj}] . {15)

I= - j=1
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Im(2) Za' PL?NE Im(w) ) w - PLANE
, m+1 ‘ (1, =xy+in
J > Zm+12 | X | m+1=Wm+1*XT
| sl .10 a =w_-x
m » »
i ™ [ T D
| ;
h a‘=x
B
Zi+1 »L D R
— — e(w)
| Zy Q™ Re(z) X [ _
segiment with ' —B><—+J, a?+1_wf+1_x8
I~ n comers ‘ap=wy-X

F1G. 5. Mapping of a channel consisting of an infinite number of segments of the same form and size.

In the above, D denotes the length of the segment in the w-plane, # stands for the
number of corners in the segment, a;’s denote locations of corners in the segment
and a;7’s are the corner turning angles. The symbols are illustrated in Fig. 5, where
the locations of corners inside the segment are defined relative to the left bottom
and top corners. The reader should note that the turning angles at the edges of the
segment are those between the appropriate wall element and the real axis. The sum
of the turning angles for a segment is zero. Transformation (15) is complete
provided the complex constant R is known and the locations of corners a; and the
length D of the segment, corresponding to a particular channel in the physical
plane, have been determined.

2.2.1. Determination of the Parameters of the Transformation

Mapping of a periodic channel into a straight channel is described by Eq. (15),
where the infinite product may be truncated after a finite m number of terms. The
estimation of the truncation error is explained with the help of the configuration
shown in Figs. 3 and 4.

Equation (15) is rewritten as

—:% H Aw) L, (w) (16)

where, for the case illustrated in Fig. 3, for example,

) T ay ) T o o3
M(w)= {smh > n} {smh % (w— T)} {smh > (w— D)}

R,(w)= {sinh z"—h (w— lD)}m {sinh 5’% (w—ID— T)}az {smh [w—(/+1) D]}

a3

&3

L(w)= {sinh 5”}-1 (w+ 11))}“1 {sinh 5’% (w+1D — T)}aj {sinh 5’% [w+(—1) D]} .

In the above, M(w) contains terms arising due to the middle segment (segment 0 in
Fig. 3), R,(w) contains terms due to the /th segment on the right side and L (w)
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stands for the terms due to the /th segment on the left side (see Fig. 3). All the
remaining symbols are explained in Figs. 3 and 4. A single term in the preduct, say
Ith term, may be rewritten as

BN

R,(M‘)ZCXP(TIL (2, T+ a;D)} {1 —exan(w—lD)} {1 — expg(w—lD — T}}
[ 2A h i )

[ —exp X [w—(14+1) D]} (17;
xél ~expﬁ[u-— } {173
T oz 1"‘
L,(w)=¢exp —EE(aZT+oc3D) 1 —exp -E(w+ID) |

x{l —exp[—%(1v+lD~ T)]}-{l—exp [w%(wu— 1;D)P L8y

)

The behaviour of the product R,(w) L,{w) for large / is estimated by considering its
logarithm

In[R,(w) L,(w)]
A / A’ A7
=, ln<1~—z,>+:x2 ln(1*§>+a3ln(l—FG~)+xl In(1 —AC)
4o, ln (1 —ACB) + a5 ln (1 - ACG) (19}

where

{ IDn oy Tn (Dn\
A—expk——h—), C—exp(——h—>, B-exp(—f;), G =exp \7,2-).

Equation (19) is expanded for large values of / resulting in the following:

in[R,(w)L,(w)]=Sexp (—[—Z—n> +0 Lexp (_2!§n>] (20}

where S= —[o (C+1/C)+2,(CB+1/CB) + o, (CG + 1/CG]. The expression for
the product R,(w) L,(w) follows from Eq. (20) and assumes the form

i 1= (2) o s 222)

D 21D
=1+Sexp<—77£)+0[exp<_ h“)] (21)

where the advantage was taken of the expansions for large /. The product
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R,(w) L,(w)— 1 exponentially when /— co. The truncated part P,, of the infinite
product in Eq. (15) is given as

P,= ﬁ exp {S exp (—————(m +}{) Dn) +0 [exp (———————————2(m +hj) Dn)]} (22)

where the truncation occurred after m terms. The magnitude of the truncated part
P, of the infinite product is estimated by taking the logarithm of Eq. (22)

In(P,)=S i expl:———(m +l{) DHJ—F i O[e:xp(———z(m *+J) Dn)]

i< o h

=3 exp (___thn) +0 l:exp (—2’"th)]. (23)

In the above, §=Sexp (~D7i//z)/ [1—exp(—Dn/h)] and the sums define
geometric sequences. The truncated part of the product assumes the form

~ D 2mD
P,,,:exp{Sexp(—mhn>+0[exp<— r;l n)]
h

~ 2
=1+Sexp(—inhﬂ)+0[exp(— thn)] (24)

The truncated part of the infinite product P,, — 1 exponentially as sz — oo. The dif-
ference between truncation at term m and m+ 1 is given as

P,—P, . . =Sexp <_mT?7t> +0 [exp <~2th7r):|

where S=S[1—exp(—Dn/h)] and it approaches zero exponentially as m — oo.
The above result suggests that the infinite product in Eq. (15) may be truncated
after a very few initial terms. The numerical testing of this conclusion is described at
the end of this section.

The iteration procedure used to determine parameters a;, and D in Eq. (15) is
analogous to the case of a non-periodic channel. The actual iteration procedure, as
described in Section 2.1.1, is carried out only for the middle segment (Fig. 3). The
locations of corners, corresponding to all the remaining segments, are determined at
each iteration step based on the condition of periodicity. In the case of a non-sym-
metric channel, the new locations of corners along the upper wall are normalized at
each iteration step to assure the same periodicity along the top and bottom of the
channel. The procedure described above converges quite rapidly, even with a poor
initial guess. The results are illustrated in Figs. 6 and 7.

The effects of truncation of the infinite product in Eq. (15) were tested for the
configuration shown in Fig. 6. The locations of corners were determined for a dif-
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Fig. 6. (A)Coordinate system for a single symmetric segment fitted into a straight chanuel,
(B) Coordinate system for a symmetric channel consisting of an infinite number of similar segments
{periodic channel).

ferent number of segment pairs with the convergence criteria for the iterative
process and the integration accuracy kept at a very low level. The results are sum-
marized in Table I and suggest that only two terms in the infinite product need to
be retained. The same conclusion was reached for the configuration shown in Fig. 7.

2.3. Channels Bounded by Curved Elements

Transformation (1) can be augmented to include channels bounded by curved
wall elements. The curved element is considered as being made up of a large num-
ber of straight line segments (Fig. 8) and the transformation (1) in the form
appropriate for this case can be rewritten as

d Rex {jina In [sinh T { (26)
—_—= ' : —{w—a) i,
T R TR |

In the limit n — oo the straight segment shrinks to zero, the turning angles o;m are
replaced by —mdf;, the locations a; are replaced by #; and the summation in

A
72 L iz, 2 Z Z L
T T“ v T }4__
=] ; e £3 =
1 L A T e
1 T -
3 T
T 1
‘F‘}—ﬁ’rr—JV ;t:{: 1T =
e m—E SESEe== c
SSEEEEE= & e EEER:

FiG. 7. (A)Coordinate system for a single non-symmetric segment fitted into a straight channel.
(B) Coordinate system for a non-symmetric channel consisting of an infinite number of similar segments
(periodic channel).
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TABLE I

Analysis of the Truncation Error in Transformation (15) Applied to the Configuration Shown in Fig. 32

Number of terms in Location of the Location of the Real part of
the infinite product second corner third corner the constant R

m a, a, Re(R)

0 0.428094 1.15322 1.00001

1 0476673 1.28411 0.967716

2 0.477204 1.28551 0.967403

3 0477213 1.28554 0.967398

4 0477213 1.28554 0.967398

2 (see Sect. 2.1.1 for details). Channel heights //=1.0, /= 1.0. The main triangle is formed by points
(0.0, 0.0), (0.5, —0.5), (1.5, 0.0).

Eq. (26) is replaced with an integral. Thus, the mapping for a continuous curved
element becomes

é—zRexp{—fln l:sinhl(nr~{f):| d,b’}. (27)
dw 2h

In the above, £ denotes the location of the points belonging to the curved elements
in the computational plane and nf stands for the tangent to the curved element in
the physical plane. The minus sign has been added to account for the fact that the
turning angles are considered to be positive in the clockwise direction (Sect. 2.1)
while tangents are positive in the counterclockwise direction. Equation (27)
includes Eq. (1), with the exception of the entrance and exit angles. When a corner
is encountered, say at a j location, § becomes a step function, and the portion of the
integral at the corner becomes

fﬂj+ln inh =~ (w—£) | dB = —«,1n | sinh — ( ) (28]
g S O I e VR 2%

where a; is the step in § at the location £ =a,, ie., a;= ;" — f;". If the channel is

Re(z)

F16. 8. Mapping of a channel bounded by curved wall elements.
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bounded only by straight wall segments, then df =0 except at the corners, where 4§
is a step function and the mapping (27) reduces to the form (1). Equation (27} is.
therefore, capable of mapping channels with shapes of a very general nature such as
shown for example in Fig. 9. The general form of the mapping may be written as

B j=n
i—:R exp M(¢;—c3) exp< Y. ocjln smh— (w—a, J
dw 2h o 29:

m=k Bl
xexp{— Y J In [sinh%(w—ﬂ)] dﬂ}

m=1"Bm

where n corners have been extracted and & represents the number of curved
segments. The mapping is complete when the locations of corners a; and curved
segments # in the computational plane, corresponding to a given configuration in
the physical plane, are established and the complex constant R is known.

2.3.1. Determination of the Parameters of the Transformation

The angle § appearing in Eq. (29) depends on the geometry of a particular cur-
ved wall segment and is a function of the location along the surface of this segment.
The curved segments in the transformation (29) may be handled by subdividing
them into elements and approximating the f variation on an element with an
appropriate analytic function of z. Here it is assumed that the wall shape is analytic
on the elements, and therefore care should be taken in making sure that ali discon-
tinuities, i.e., corners, curvature discontinuities, etc., appear at the element end
points.

The shape of the wall element between m and m + 1 is considered to be analytic
and j§ is approximated as

B=Cipt Copsinh o= (6= £,) + 3,y cOSh 2 (6~ £,) (30)
2h 2h

where £,=4(£,,+4,,, ) denotes the location of the middle point of the element in
the computatxonal plane and ¢,,,. ¢,,., and c;, are constants. The integral in
Eq. (29) is evaluated analytically resulting in the following form of the transfor-
mation:

TEm

d- m=np T
%:R l: ¢ O)] Z l:slnhﬂ(“"am)J

m=1

Lam "Cim " (31)

where n denotes the number of elements and g,,, and g,,, are defined as
{

T sinh[(m/4h )4 mst — Em)] sinh{(m. 401 — Fmt]
gom = [Slnh ?!; (W - ém +1 )] [Slnh YA (” bon ):!

ct h /4h "—K sinh[ {7 2A)(w — #4)] ) =
x[ ghin/4h)(n '"“)] -exp[—251nh-n—(ﬁm+l—ém)J (32)

ctgh(n/dh)(w—£,,) 4h
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_ [sinh(x/2h)(w — £, ., )]wsh“n/“h’“mH ~ ¢m)]
83m = | “sinh(n/2h)(w — 4y)

ctgh(n/4h)(w—4,, . 1)]°°S““"/2h"”' e (33)
ctgh(n/dh)(w—£,,) '

A corner has been added at the beginning of each element in order to simplify the
notation. The case of «,, =0 corresponds to an element without a corner.
Equation (31) can be integrated in the manner described in Section 2.1.1. Each
element corresponds to onc integration step. Equation (6) is used to handle
singularities associated with corners and the contributions due to g5, and g3,
which are non-singular, are obtained by evaluating these terms at the integration
step mid-point.

The constants in Eq. (30) are to be evaluated from the matching of the assumed
surface slope distribution with the surface slope and the element endpoints. The
particular constants required in the transformation (31) are defined as,

¢ — ﬂm+l _—ﬁm
277 2 sinh(n/4h) (£, 1 —£,)

¢ — Hm_(l/z)(ﬁrn+l+ﬁm)
71 —cosh(n/4h)(£,, .\ — L)

(34)

where 8,7, B, .7 denote surface slope at the beginning and end of the element
respectively and 6, stands for the slope of a straight line connecting points m and
m+ 1.

The location of the element endpoints £,, in the computational plane,
corresponding to their known locations z,, in the physical plane, have to be
established through a method of successwe approximations. The procedure is
exactly the same asdescribed-imrSection 2-1-1-The+4,;’s are guessed-initially-and-are
iteratively corrected by Eq. (5), where the a,; and a,; are replaced with £, and 4,;
Similarly, |R] is established through the iterations, while arg(R) assumes the values
given in Section 2.1.1. The process converges as rapidly as in the case of a channel
bounded by straight wall elements.

2.4. Periodic Channels Bounded by Curved Elements

The extension of transformation (29) to the case of periodic channels is
analogous to the case of periodic channels bounded by straight elements, described
in Section 2.2. The transformation has the form

dz /= +x
%zR I exp{?ozln[smh—(u—lD~a)]}
J

/= - =1

(35)

m=k B . T )
xexp{— Y J ln[smh,)—h(w—lD—[i)]d[)’}

m=1 "Bm
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FiG. 9. (A)Coordinate system for a single segment of an arbitrary shape fitted into a straight chan-
nel. (B) Coordinate system for a channel consisting of an infinite number of similar segments of arbitrary
shape (periodic channel).

where all the symbols have the same meaning as in Eqgs. (15) and (29). The trans-
formation is complete if all parameters, i.e., R, D, a,, and £, corresponding to a par-
ticular configuration of interest, have been determined. The numerical procedure is
analogous to the case of non-periodic channels, as described in Section 2.3.1. The
actual iteration procedure is carried out only for the middle segment (Fig. 3}, as in
the case of periodic channels bounded by straight wall elements (Sect. 2.2.1). The
procedure converges quite rapidly, even with a poor initial guess. The results are
iltustrated in Fig. 9. In this particular case, the parameters of the transformation
were determined with sufficient accuracy with the infinite product in Eq. (35} trun-
cated after two terms.

3. EXTERNAL CONFIGURATIONS

External flows are those where the expanse of the fluid is unbounded. Flow of
fluid adjacent to a solid boundary, but otherwise unbounded, is then of interest and
the term external configuration refers here to the shape or configuration of such a
boundary. The most obvious example is the case of flow next to a wall. This case
has been posed and solved by a method based on nonlinear integral relations by
Menikoff and Zemach [6].

3.1. Walls Formed by Straight Elements

An arbitrary wall, formed by straight elements in the physical plane, is mapped
into a straight wall in the computational plane. The appropriate transformation has
been described by Davis [2] and is illustrated in Fig. 10. The following presen-
tation is limited to a short outline.

The transformation has the form

dz

j=n
__R w'_a,)‘.‘/ (’}6;
&R =g %)
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z - PLANE (physical) w - PLANE (computational)

Im(z) Im(w)
' @ G T
| & Zfﬁ@
AT e X
Z;\ %™

F16. 10. Mapping of an arbitrary wall into a straight wall.

where R is a complex constant, n determines the number of corners, an’s denote
corner turning angles and a;’s defined the locations of corners in the computational
plane (Fig. 10). Angles an are taken to be positive for the clockwise rotation. The
above mapping is known as the Schwarz-Christoffel transformation.

The transformation is complete provided that the locations of points a in the
computational plane, corresponding to the corners in the physical plane, are known
and the complex constant R has been determined. This is achieved by applying the
numerical procedure described in the next section.

3.1.1. Determination of the Parameters of the Transformation

The difficulties in applying transformation (36) are due to the fact that the
relation between a particular wall shape, and the numerical values of the
parameters of the appropriate transformation, is not explicit, similarly as in the case
of the interior configurations (Sect. 2). Therefore, the required parameters have to
be determined through a method of successive approximations.

The relation between z and w is given as

z=f" g(w) dw+ N (37)

wo

where g(w) stands for the right-hand side of Eq. (36). The initial point w, in the w
plane can be chosen arbitrarily within the domain 0<Im(w,).
— o0 < Re(wg) < + o0, and it is taken to be zero throughout this paper. Once the
initial point w, has been chosen, the constant N controls the location of the wall in
the = plane. The constant N is taken to be zero throughout this paper and thus the
origins of the = and w planes coincide. If the » turning angles a7, %,7,..., o, 7 are
given, the shape of the wall in the z plane is determined uniquely by the choice of n
points a,, 4,,...a, in Eq. (36) and is independent of the particular values of the
constants w, and N in Eq. (37) and R in Eq. (36). The constant R controls the scale
of the wall through the value of |R| and its orientation through the value of arg(R).
According to the Riemann’s mapping theorem [1], just three of the points a; may
be chosen arbitrarily. The reader should note that the total number of corners in
Eq. (36) is n+ 1, where n corners appear explicitly and one degenerate corner enters
the equation only implicitly. The degenerate corner corresponds to infinity in the
upper half plane and may be identified by considering transformation of the upper
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half plane into a polygon. One point belonging to the boundary of the transformed
domain is, therefore, fixed due to the nature of the transformation, and two points
remain to be chosen arbitrarily. This choice is accomplished throughout this paper
by placing the first corner at the origin of the w plane (a, =0}, and the last corner
at w=(10,0.0), ie, a,=1. All the remaining parameters are uniquely defined and
have to be determined from Eq. (36) as a part of the solution.

The complex constant R and the locations a; of all the corners, with the excep-
tion of the first and the last one (a, =0, a,=1), have to be determined through a
series of successive approximations. The following outline of the iteration procedure
is adopted from [2].

An initial guess is made for R and for locations of corners g;. The a's are picked
along the real axis such that a, | <a;<a, . Integration is carried subsequently
from the origin of the w plane along the wall, to determine locations of the corners
in the physical plane. The broken line in Fig. 11 illustrates a typical shape of the
wall. corresponding to the assumed locations of the corners in the computational
plane. The location of the last corner in the computational plane is known. a, =1,
and its computed location in the physical plane is made to coincide with the
specified location through the appropriate selection of constant R. The shapes of
both figures are then matched through the appropriate change in location of the
remaining corners in the computational plane. The new guess is made for the
location of corners by assuming that the a;’s should be rescaled according to the
scaling indicated by errors in the distances between the corners in the physical
plane:

|acj_avlj—l'|l — 1:Cj_:((j71)| (38)
‘ag/"agl'j~*ll| Izgi*:g(j—l)l

Here the subscript ¢ denotes the correct values, g stands for the guessed values,
denotes the corner number, and & is a scaling parameter such that a_,=1. The
above procedure converges quite rapidly, even with a poor initial guess. Results for
one of the cases considered are displayed in Fig. 11.

[miz)

[miw)

Fic. 11. Tlustration of the iteration procedure for mapping of a wall.
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The numerical integration of Eq. (36) is complicated due to singularities present
when o;<0. The appropriate integration formula, extracting singularities
analytically, has been developed in [2] and has the form

__a_)oz+1 W+ 1

j=nw
1—n S
Tmi1— Zm=R (4W) _,I—I1 [__aj+1 ]w,,, (39)

where subscript m denotes the integration step. The above formula is of the second-
order accuracy type.

3.2. Periodic Walls Formed by Straight Elements

Extension of transformation (36) to the case of periodic walls is obtained follow-
ing a procedure analogous to the one described in Section 2.2. The procedure is
explained with the help of the wall represented by the bottom of the channel shown
in Fig. 3. The transformation has the form

d I=n

d‘ =R n (w—ay)™(w—ay, )W —ay,,)" (40)
W Pl

where the subscript /, which denotes a particular triangle, assumes all integer values
between /= —n and /=n. The reader should note that the turning angles,
corresponding to the corners located on the borders between different segments, are
defined as those between the appropriate wall element and the real axis. The total
turning angle associated with each segment (triangle) is «, + a5 + 23 =0. The con-
figuration in the physical plane becomes periodic when the number of triangle pairs
increases indefinitely n — oo. It is obvious that if the right-hand side of Eq. (40), in
the limit n — oo, describes a certain periodic configuration in the w plane, the
corresponding configuration in the z plane is also periodic. The correctness of the

reverse statement can be demonstrated as in the case of periodic channels
{Sect 771

straighttorward.

d7

1=
v ; :I_I

In the above, D denotes the length of the segment in the w plane, » stands for the
number of corners in the segment, a4/s denote locations of corners in the segment
and «;’s are the corner turning angles. The symbols are illustrated in Fig. 5, where
locations of the corners inside the segment are defined relative to the left corner.
The bottom part of the channel in Fig. 5 represents the wall, and the top should be
ignored. The reader should note that the turning angles at the edges of the segment

:]u

(w—lD—a) (41)

H
—
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are those between the appropriate wall element and the real axis. The sum of the
turning angles for a segment is zero. Transformation (41) is complete provided the
complex constant R is known and the locations of corners a; and the length D of
the segment, corresponding to a particular channel in the phchal plane, have been
determined.

3.2.1. Determination of the Parameters on the Transformation

Mapping of a periodic wall into a straight wall is described by Eq. (41) where the
infinite product may be truncated after a finite m number of terms. The estimation
of the truncation error is explained with the help of the configuration shown in
Figs. 3 and 4, where the bottom of the channel represents the wall. Equation (41} is
rewritten as

d- x
—=RMw) [] R,(w) L,{w) 142}
dw o

where
MQOw)=w""(w—T)*(w—D)*
R,(w) = (w — D) — ID — TY=[1w— {[+1) D]*
Liw)={w+IDy{(w+ID-T)[w+({-1) D™=

In the above M(w) contains terms arising due to the middle segment (segment 0 in
Fig. 3), R,(w) contains terms due to the /th segment on the right side and L,{w}
stands for the terms due to the /th segment on the left side (see Fig. 3). Ail the
remaining symbols are explained in Figs. 3 and 4. The /th term in the product may
be written as

’ ‘,\Z %] —T\’ l
R/(W)L/("‘)=[1_<é) } [1_(\11D ) }

and its behavior for large / is estimated by taking logarithm of Eq. (43

B s Pl
In[R,(w)L;(w)]=0o; In (1 ﬁ%) + oy ln(l _F> +a5ln (1 —%) {(ad)

where A =w?/D*, B=(w—T)*/D* C=(w— D)D" Equation (44) is expanded for
large values of [ resulting in the following:

In[R,(w) L,(w)]=SI"2+0("%) {45)

where S= —ua, 4 —a,B—0;C. The expression for the product R,(w) L,(w) follows
from Eq. (45) and assumes the form

RiwyL,(w)y=exp[SI 2+ 0(I"")]=1+5I"+00 " {46)

581 62°1-16



240 ' J. M. FLORYAN

where the advantage was taken of the expansions for large / The product
R,(w) L,(w)— 1 as /=2 with /- oc. The truncated part P, of the infinite product in
Eq. (41) is given as

P, =1 exp{SOm+/) 2+ O[(m+)~T} (47)
j=1

where the truncation occurred after m terms. The magnitude of the truncated part
P, of the infinite product is evaluated by taking the logarithm of Eq. (47).

0(P)=S Y (m+j) + Y OLm+j)~*1<Sm '+0(m=%)  (48)

j=1 ji=1

where the estimation of the sums is described in Appendix A. The truncated part of
the product is estimated to be

P,<exp[Sm~'4+0m3)]=1+Sm '+ S"m >+ 0(m3). (49)
The truncated part of the infinite product P,,— 1 no slower than m~' when
m — cc. The difference between truncation at term m and m+ 1 is given as
P,—P,. . =cxp [S Y m+14+)72+0((m+1 +j)4):|
J=1
x {exp[S(m+1) >+ 0((m+1)""]—1}
Lexp[Sm+ 1) +0((m+1)7)]
x {exp[S(m+ 1)~ *+O0((m+1)")] -1}
=Sm+1)2+0((m+1)7?) (50)

and it approaches zero no slower than (m + 1)~ as m — o0. The estimation of sums
given in Appendix A and expansions for large m were used when deriving Eq. (50).
The results suggest that the infinite product in Eq. (41) may be truncated after a
finite number of terms, however, this number may be considerably larger than the
one for the case of periodic channels. The numerical testing of the above con-
clusions is described at the end of this section.

The iteration procedure used to determine parameters 4, and D in Eq. (41) is
analogous to the case of a non-periodic wall. The actual iteration procedure, as
described in Section 3.1.1, is carried out only for the middle segment (Fig. 3), and it
predetermines the length D as unity. The locations of corners, corresponding to all
the remaining segments, are determined at each iteration step based on the con-
dition of periodicity. The procedure described above converges quite rapidly, even
with a poor initial guess. The results are illustrated in Fig. 12.

The effects of truncation of the infinite product in Eq. (41) were tested for the
configuration shown in Fig. 6, where the bottom of the channel was assumed to
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Fic. 12. (A) Coordinate system for a single segment fitted into a straight wall {B) Cocrdinate
system for a wall consisting of an infinite number of similar segments {periodic wall).

represent the wall. The locations of corners were determined for different numbers
of segment pairs with the integration step of 0.001 and with the convergence criteria
for the iterative process kept at a very low level (10~ ®). The results are summarized
in Table 2 and suggest that at least ten terms in the infinite product need to be
retained to provide a three digit accuracy. The reader may recall that only two
terms were needed for a periodic channel. The method presented here is effective,
however, the large number of terms needed to represent a periodic wall may create
an unneccessarily high demand on computer resources and may facilitate search for
another solution to the coordinate generation problem.

TABLEII

Analysis of the Truncation Error in Transformation (41} Applied to the Configuration
Represented by the Bottom of the Channel in Fig. 3*

Number of terms in Location of the Real part of
the infinite product second corner the constant R
m a, Re(R)
0 0.371203 1.20983
I 0371178 1.40960
2 0.371198 1.44526
3 0.371201 1.46072
4 0.371202 1.46937
6 0.371203 1.47873
g 0.371203 1.48371
10 0.371203 148680
12 0371203 1.48890
14 0.371203 1.49043
16 0.371203 1.49159
18 0.371203 1.49249
20 0.371203 1.49322

¢ {see Sect. 3.2.1 for details). The main triangle is formed by points (0.0, 0.0), {0.5, —0.5). (1.5, 3.0}.
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3.3. Walls Formed by Curved Elements

Transformation (36) can be augmented to include walls bounded by curved
elements [2]. The curved element is considered as being made up of a large number
of straight line segments (bottom of the channel on Fig. 8) and the transfor-
mation (36) in the form appropriate for this case can be rewritten as

i:Rexp [jin oc_,-ln(\rv~aj)]. (51)

Jj=1

In the limit as #n — oo the straight segment shrinks to zero, the turning angles o;n
are replaced by —mndf;, the locations a; are replaced by 4; and the summation in
Eq. (51) is replaced with an integral. Thus, the mapping for a continuous curved
element becomes

dz i ;
%=Rexp[—J In(w—£) dﬁ]. (52)

In the above, £ denotes the location of the points belonging to the curved elements
in the computational plane and 7 stands for the tangent to the curved clement in
the physical plane. The minus sign has been added to account for the fact that the
turning angles are considered to be positive in the clockwise direction (Sect. 3.1)
while tangents are positive in the counterclockwise direction. Equation (52)
includes Eq. (36) as a special case. When a corner is encountered, say at a j
location, § becomes a step function and the portion of the integral at the corner
becomes

fﬁf In(w — £) df = —a, In(w — a,) (53)

J

where a; is the step in f at the location £ = a;. The general form of the mapping
may be written as

“ _Rexp|’S @ inw—a) mfkjp’"“1 ' g)dﬁ] (54)
— . b — . —_— 17_
- exp I:,-; a; In(w — q; 2 n(w

where n corners have been extracted and k represents the number of curved
segments. The mapping is complete when the locations of corners a; and curved
segments £ in the computational plane, corresponding to a given configuration in
the physical plane, are established and the complex constant R is known. This may
be achieved by applying the numerical procedure described in the next section.

3.3.1. Determination of the Parameters of the Transformation

The detailed description of the procedure leading to the determination of the
parameters of the transformation (54) is given in [2]. The procedure used in this
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paper has been adapted from [2] with modifications. The foilowing presentation is
limited to a short outline.

The angle § appearing in Eq. (54) depends on the geometry of a particular cur-
ved wall segment and is a function of the location along the surface of this segment.
The curved segments in the transformation (54) may be handled by subdividing
them into elements and approximating the f variation on an element with an
appropriate analytic function of z. Here it is assumed that the wall shape is analytic
on the elements, and therefore, care should be taken in making sure that all discon-
tinuities, 1.¢., corners, curvature discontinuities, etc., appear at the element end
points.

Shape of the wall element between m and m + 1 is considered to be analytic and
§ is approximated as

2 .
'8'71:C1n1+(.2m(é—ﬁa)+C3m({;_”{u} 155}
where £/ =L/ L £ N denntec lncation af the middie naint of the pleament in thae
d;- m=n
=R =, ) g T R (56

m=1

I

where n denotes the number of elements and g,,, and g, are defined as

(“‘ - [:m)w o eXp(ﬁm B /Lm +1 ’

Oy )"

om =

W f N\ s = )
n 5 Ry , ;
g3m=(—————) expl(£,, . — 2Nt —F, .y w/2T]. i(58)

»w—[an_ 1/

A corner has been added at the beginning of each element in order to simplify the
notation. The case of a, =0 corresponds to an element without a corner.
Equation (56) can be integrated in the manner described in Section 3.1.1. Each
element corresponds to one integration step. Fquation (39) is used to handle
singularities associated with corners and the contributions due to g,, " and
g3» ", which are non-singular, are obtained by evaluating these terms at the
integration step midpoint.

The constants in Eq. (55) are to be evaluated from the matching of the assumed
surface slope distribution with the surface slope at the element endpoints. The par-
ticular constants required in the transformation (56) are defined as

Cam :Bm+ 1 ‘ﬁm
ﬂnz'{—l_[{m .
{591}
¢ _2(ﬁm+l+ﬂm~29m)
3m

(£m+ 17 ﬁmjz
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where ., B, {n denote surface slope at the beginning and end of the element
respectively and 6, stands for the slope of a straight line connecting points m and
m+ 1.

The location of the element endpoints 4, in the computational plane,
corresponding to their known locations z,, in the physical plane, have to be
established through a method of successice approximations. The procedure is
exactly the same as described in Section 3.1.1. The £,,’s are guessed initially and are
iteratively corrected by Eq. (38), where the a,; and a,; are replaced with £, and £,;.
The constant R is established in a similar manner. The process converges as rapidly
as in the case of a wall formed by straight segments.

3.4. Periodic Walls Formed by Curved Elements

The extension of transformation (54) to the case of periodic walls is analogous to
the case of periodic walls formed by straight elements, described in Section 3.2, The
transformation has the form

—=R [] exp| ¥ o;In(w—ID—a;))— )

dw I= =1 m=1"bm

dZ [= +oc j=n m=k Bme1
[ In(w—ID — £) dﬁ} (60)
J

— o0

where all the symbols have the same meaning as in Eqgs. (41) and (54). The trans-
formation is complete if all the parameters, ie., R, D, a;, and 4, corresponding to a
particular configuration of interest, have been determined. The numerical procedure
is analogous to the case of non-periodic walls, as described in Section 3.3.1. The
actual iteration procedure is carried out only for the middle segment (Fig. 3) as in
the case of periodic walls bounded by straight clements (Sect. 3.2.1). The procedure
converges quite rapidly, even with a poor initial guess. The results are illustrated in
Fig. 13.

FiG. 13. (A)Coordinate system for a single segment of an arbitrary shape fitted into a straight wall.
(B) Coordinate system for a wall consisting of an infinite number of similar segments of arbitrary shape
(periodic wall).
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4. MEeTRIC COEFFICIENT

Transformations described in this paper may be used to generate several differen:
coordinate systems, which may be conformal or nonconformal, orthogonal or non-
orthogonal [3]. The simplest coordinate system is defined by lines = const. and
n=const. in the computational plane (w=¢+in). The metric coefficients wich
define the ratio of the differential distances in the - = x + iy plane to the differentials
of the coordinate parameters in the w= ¢ + i plane, have the form:

. /ax)l C’)‘.Z 1.2 . /(’FX\ 2 /C:V\ 2912
r= A — = _— . . /1
i, [(@5, +<86] . h, [(ﬁn) +(\6”/) ] (61)

It can be shown that in the case of a conformal mapping

and the coordinate system is characterized by only one metric coefficient, which can
be easily determined from Eq. (35) or (60).

5. POTENTIAL FLOW

The determination of the parameters of transformations (35) and (60) is
equivalent to the solution of the Laplace equation and may be conveniently inter-
preted as a solution of the potential flow problem in a periodic channel or over a
periodic wall. The complex potential, 2 = ® + ¥, in the transformed plane has the
form:

Q=An. {63)
The complex velocity at a point in the physical plane is given by
L dQ  dQjdw A
U—ir=—= = {64)

dz  dzjdw  dzjdw’

The constant 4 may be determined from the known flow condition. When, for
example, the flow rate Q through the channel is known, A4 = Q/h. The pressure field

can be easily specified in terms of the pressure coefficient
— A2
= P—Po —1— ; (65)
(12) pUg Uh

where p, and U, are pressure and velocity at a reference point and /4 is given by
Eq. (62).
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6. CONCLUDING REMARKS

A coordinate generation method for flows in periodic configurations has been
developed. The method involves, in the case of internal configurations, a conformal
mappig of a channel of an arbitrary shape in the physical plane into a straight
channel in the computational plane, and, in the case of external configurations, a
conformal mapping of a wall of an arbitrary shape in the physical plane into a
straight wall in the computational plane. The mappings, which are given explicitly,
involve parameters defined in the computational plane and thus not known a priori
for the specified configuration in the physical plane. A method of successive
approximations, leading to the determination of the required parameters, is present-
ed. The method has a very simple logic, is easy to program and converges quite
rapidly, however, it may require considerable computing resources in the case of
periodic walls. The method is very effective. Several configurations of a rather
extreme geometry have been solved without encountering difficulties. As a
byproduct the method produces a solution of the potential flow problem for the
given configuration.

APPENDIX A

The estimation of the magnitude of the sum

=
Sw= X 1= (A1)
k=m+1 k
is made by considering the inequality
LI | L
J —dxz—  k>1,n>1, (A2)
k-1X k

which follows from the basic property of integrals, ie.,
b

m(b—a)sJ f(x)dx < M(b—a)

a

where m and M are the minimum and maximum of the function f(x) in {a, b).
Equation (A2) may be written for k=m, m+1, m+2,..,

J‘m+1 1 1

—_——
m X" (m+1)"

m+2 ] 1
dxz——— A3
L+1x“h 1+ 2)" (A3)

m+k+1 1 1
__2—_.__
Lﬁk T k1)
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Summation of all of the above inequalities results in

x| o 1
== =Sy (A4)
IR

and gives the estimate of the sum (A1)

o ] )
Z -klf; S - (AD }
PR (n—1ym
REFERENCES

1. G. F. Carrier. M. KrooK, aND C. E. PEarRsON, “Functions of a Complex Variable,” McGraw-Hili,
New York, 1966.

2. R, T. Davis, “Numerical Methods for Coordinate Generation Based on the Schwarz-Christoffel
Transformations,” AIAA Paper No. 79-1463, 4th Computational Fluid Dynamics Conference, 1979.

. J. M. FLorYAN, J. Compur. Phys. 58 (1985), 229-245,

(o8]

4. D. C. Ives, “Three-Dimensional Grid Generation Using Conformal Mapping,” ATAA Paper
No. 83-1906~CP, 6th Computational Fiuid Dynamics Conference, 1983.
5. M. Van Dyke. ““Perturbation Methods in Fluid Dynamics,” Parabolic. Stanford, Calif., 1975.

6. K. P. SripHAR AND R. T. Davis, A Schwarz-Chritoffel method for generating internal flow grids, in
“Computers in Flow Predictions and Fluid Dynamics Experiments™ (K. N. Ghia, T. S. Mueller, and
B. R. Patel. Eds.), ASME Winter Annual Meeting, Washington, D.C., 1981.

7. R. MENIKOFF AND C. ZEMACH, J. Comput. Phys. 36 (1980). 366,



